Immunomodulatory Action of Parasympathetic Stimulation promoted by Physical Exercise

Authors

  • Priscila Gomes de Mello Fundação Instituto Oswaldo Cruz (ICICT/FIOCRUZ), Rio de Janeiro – RJ, Brasil

DOI:

https://doi.org/10.16887/kza73227

Keywords:

Physical Exercise, Parasympathetic Stimulation, Immune System, Vagus Nerve, Neuromodulation

Abstract

Introduction: Physical exercise promotes the stimulation of the vagal nerve and different neural networks, contributing to a more effective anti-inflammatory response in order to contribute to cardiovascular, metabolic and immunological benefits. Objective: To associate the role of physical exercise with parasympathetic stimulation and its possible implications in immunomodulation Methods: This is a qualitative, explanatory and descriptive study on the immunomodulatory action of parasympathetic activation through physical exercise through a bibliographic review. The databases used were: PubMed, Scopus, Scielo and Web of Science involving all original articles from January 2015 and June 2024. Results: The main findings are related to differences in physical exercise intensity, which can contribute to the modulation of the innate immune system and the expression of neutrophil and lymphocyte cell populations, which can contribute to a more specific immune response. Aerobic training and strength training had similar responses in reducing BMI and glycated hemoglobin, reducing sympathetic tone, increasing parasympathetic tone, and improving the sympatho/vagal balance for controlling heart rate variability. There was a negative association between vagal neuroimmunomodulation (NIM) and mortality, since the lower the NIM index, the shorter the survival time in the population sample. Conclusion: Aerobic physical exercise and strength training can contribute to the activation of the parasympathetic system and immune system and provide better adjustments in the innate and adaptive immune response dependent on the intensity and volume of training.

Downloads

Download data is not yet available.

References

Arocha Rodulfo J. I. (2019). Sedentary lifestyle a disease from xxi century. Sedentarismo, la enfermedad del siglo xxi. Clinica e investigacion en arteriosclerosis : publicacion oficial de la Sociedad Espanola de Arteriosclerosis, 31(5), 233–240. https://doi.org/10.1016/j.arteri.2019.04.004 DOI: https://doi.org/10.1016/j.arteri.2019.04.004

Bellavere, F., Cacciatori, V., Bacchi, E., Gemma, M. L., Raimondo, D., Negri, C., Thomaseth, K., Muggeo, M., Bonora, E., & Moghetti, P. (2018). Effects of aerobic or resistance exercise training on cardiovascular autonomic function of subjects with type 2 diabetes: A pilot study. Nutrition, metabolism, and cardiovascular diseases : NMCD, 28(3), 226–233. https://doi.org/10.1016/j.numecd.2017.12.008 DOI: https://doi.org/10.1016/j.numecd.2017.12.008

Campbell, J. P., & Turner, J. E. (2018). Debunking the Myth of Exercise-Induced Immune Suppression: Redefining the Impact of Exercise on Immunological Health Across the Lifespan. Frontiers in immunology, 9, 648. https://doi.org/10.3389/fimmu.2018.00648 DOI: https://doi.org/10.3389/fimmu.2018.00648

Cutrim, A. L. C., Duarte, A. A. M., Silva-Filho, A. C., Dias, C. J., Urtado, C. B., Ribeiro, R. M., Rigatto, K., Rodrigues, B., Dibai-Filho, A. V., & Mostarda, C. T. (2019). Inspiratory muscle training improves autonomic modulation and exercise tolerance in chronic obstructive pulmonary disease subjects: A randomized-controlled trial. Respiratory physiology & neurobiology, 263, 31–37. https://doi.org/10.1016/j.resp.2019.03.003 DOI: https://doi.org/10.1016/j.resp.2019.03.003

De Paula, T., Neves, M. F., da Silva Itaborahy, A., Monteiro, W., Farinatti, P., & Cunha, F. A. (2019). Acute Effect of Aerobic and Strength Exercise on Heart Rate Variability and Baroreflex Sensitivity in Men With Autonomic Dysfunction. Journal of strength and conditioning research, 33(10), 2743–2752. https://doi.org/10.1519/JSC.0000000000002372 DOI: https://doi.org/10.1519/JSC.0000000000002372

Di Liegro I. (2019). Genetic and Epigenetic Modulation of Cell Functions by Physical Exercise. Genes, 10(12), 1043. https://doi.org/10.3390/genes10121043 DOI: https://doi.org/10.3390/genes10121043

Ferguson B. (2014). ACSM’s Guidelines for Exercise Testing and Prescription 9th Ed. 2014. The Journal of the Canadian Chiropractic Association, 58(3), 328.

Ferreira, M. L. V., Sardeli, A. V., Souza, G. V., Bonganha, V., Santos, L. D. C., Castro, A., Cavaglieri, C. R., & Chacon-Mikahil, M. P. T. (2017). Cardiac autonomic and haemodynamic recovery after a single session of aerobic exercise with and without blood flow restriction in older adults. Journal of sports sciences, 35(24), 2412–2420. https://doi.org/10.1080/02640414.2016.1271139 DOI: https://doi.org/10.1080/02640414.2016.1271139

Frøkjaer, J. B., Bergmann, S., Brock, C., Madzak, A., Farmer, A. D., Ellrich, J., & Drewes, A. M. (2016). Modulation of vagal tone enhances gastroduodenal motility and reduces somatic pain sensitivity. Neurogastroenterology and motility, 28(4), 592–598. https://doi.org/10.1111/nmo.12760. DOI: https://doi.org/10.1111/nmo.12760

Jarczok, M.N., Koenig, J. & Thayer, J.F (2021). Lower values of a novel index of Vagal-Neuroimmunomodulation are associated to higher all-cause mortality in two large general population samples with 18 year follow up. Sci Rep 11, 2554. https://doi.org/10.1038/s41598-021-82168-6 DOI: https://doi.org/10.1038/s41598-021-82168-6

Macartney, M. J., Notley, S. R., Herry, C. L., Seely, A. J. E., Sigal, R. J., & Kenny, G. P. (2020). Cardiac autonomic modulation in type 1 diabetes during exercise-heat stress. Acta diabetologica, 57(8), 959–963. https://doi.org/10.1007/s00592-020-01505-9 DOI: https://doi.org/10.1007/s00592-020-01505-9

Masroor, S., Bhati, P., Verma, S., Khan, M., & Hussain, M. E. (2018). Heart Rate Variability following Combined Aerobic and Resistance Training in Sedentary Hypertensive Women: A Randomised Control Trial. Indian heart journal, 70 Suppl 3(Suppl 3), S28–S35. https://doi.org/10.1016/j.ihj.2018.03.005 DOI: https://doi.org/10.1016/j.ihj.2018.03.005

Mayo, X., Iglesias-Soler, E., Carballeira-Fernández, E., & Fernández-Del-Olmo, M. (2016). A shorter set reduces the loss of cardiac autonomic and baroreflex control after resistance exercise. European journal of sport science, 16(8), 996–1004. https://doi.org/10.1080/17461391.2015.1108367 DOI: https://doi.org/10.1080/17461391.2015.1108367

Michael, S., Jay, O., Graham, K. S., & Davis, G. M. (2018). Influence of exercise modality on cardiac parasympathetic and sympathetic indices during post-exercise recovery. Journal of science and medicine in sport, 21(10), 1079–1084. https://doi.org/10.1016/j.jsams.2018.01.015 DOI: https://doi.org/10.1016/j.jsams.2018.01.015

Napadow, V., Edwards, R. R., Cahalan, C. M., Mensing, G., Greenbaum, S., Valovska, A., Li, A., Kim, J., Maeda, Y., Park, K., & Wasan, A. D. (2012). Evoked pain analgesia in chronic pelvic pain patients using respiratory-gated auricular vagal afferent nerve stimulation. Pain medicine (Malden, Mass.), 13(6), 777–789. https://doi.org/10.1111/j.1526-4637.2012.01385.x DOI: https://doi.org/10.1111/j.1526-4637.2012.01385.x

Petersen, A. M., & Pedersen, B. K. (2005). The anti-inflammatory effect of exercise. Journal of applied physiology (Bethesda, Md. : 1985), 98(4), 1154–1162. https://doi.org/10.1152/japplphysiol.00164.2004 DOI: https://doi.org/10.1152/japplphysiol.00164.2004

Prins, F. M., Said, M. A., van de Vegte, Y. J., Verweij, N., Groot, H. E., & van der Harst, P. (2019). Genetically Determined Physical Activity and Its Association with Circulating Blood Cells. Genes, 10(11), 908. https://doi.org/10.3390/genes10110908 DOI: https://doi.org/10.3390/genes10110908

Shimojo, G., Joseph, B., Shah, R., Consolim-Colombo, F. M., De Angelis, K., & Ulloa, L. (2019). Exercise activates vagal induction of dopamine and attenuates systemic inflammation. Brain, behavior, and immunity, 75, 181–191. https://doi.org/10.1016/j.bbi.2018.10.005 DOI: https://doi.org/10.1016/j.bbi.2018.10.005

Song, J., Yin, J., Sallam, H. S., Bai, T., Chen, Y., & Chen, J. D. (2013). Electroacupuncture improves burn-induced impairment in gastric motility mediated via the vagal mechanism in rats. Neurogastroenterology and motility, 25(10), 807–e635. https://doi.org/10.1111/nmo.12183 DOI: https://doi.org/10.1111/nmo.12183

Toohey, K., Pumpa, K., McKune, A., Cooke, J., Welvaert, M., Northey, J., Quinlan, C., & Semple, S. (2020). The impact of high-intensity interval training exercise on breast cancer survivors: a pilot study to explore fitness, cardiac regulation and biomarkers of the stress systems. BMC cancer, 20(1), 787. https://doi.org/10.1186/s12885-020-07295-1 DOI: https://doi.org/10.1186/s12885-020-07295-1

Weippert, M., Behrens, K., Rieger, A., Kumar, M., & Behrens, M. (2015). Effects of breathing patterns and light exercise on linear and nonlinear heart rate variability. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 40(8), 762–768. https://doi.org/10.1139/apnm-2014-0493 DOI: https://doi.org/10.1139/apnm-2014-0493

World Health Organization (WHO). Global Recommendations on Physical Activity for Health. (2010).

Zhang, B., Zhu, K., Hu, P., Xu, F., Zhu, L., & Chen, J. D. Z. (2019). Needleless Transcutaneous Neuromodulation Accelerates Postoperative Recovery Mediated via Autonomic and Immuno-Cytokine Mechanisms in Patients With Cholecystolithiasis. Neuromodulation: journal of the International Neuromodulation Society, 22(5), 546–554. https://doi.org/10.1111/ner.12856 DOI: https://doi.org/10.1111/ner.12856

Zhao, M., Sun, L., Liu, J. J., Wang, H., Miao, Y., & Zang, W. J. (2012). Vagal nerve modulation: a promising new therapeutic approach for cardiovascular diseases. Clinical and experimental pharmacology & physiology, 39(8), 701–705. https://doi.org/10.1111/j.1440-1681.2011.05644.x DOI: https://doi.org/10.1111/j.1440-1681.2011.05644.x

Zhu, Y., Li, X., Ma, J., Xu, W., Li, M., Gong, Y., Zhang, B., Chen, Y., Chao, S., Xu, Q., Lin, L., & Chen, J. D. Z. (2020). Transcutaneous Electrical Acustimulation Improves Gastrointestinal Disturbances Induced by Transcatheter Arterial Chemoembolization in Patients With Liver Cancers. Neuromodulation : journal of the International Neuromodulation Society, 23(8), 1180–1188. https://doi.org/10.1111/ner.13158 DOI: https://doi.org/10.1111/ner.13158

Published

2024-08-04

How to Cite

Immunomodulatory Action of Parasympathetic Stimulation promoted by Physical Exercise . (2024). Fiep Bulletin - Online, 94(3), e7029. https://doi.org/10.16887/kza73227